GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-I & II(NEW)EXAMINATION – SUMMER 2022 Subject Code:3110014 Date:02-08-2022			
Time	ject Name:Mathematics - 1 e:10:30 AM TO 01:30 PM Total Marks uctions:		ks:70
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.	
	3. 4.	Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	Marks
Q.1	(a)	Is $\sum_{n=1}^{\infty} \frac{1}{n^p}$ convergent for $p > 1$? Justify your answer.	03
	(b)	(1) Find $\lim_{x \to a} \frac{\sin x - \sin a}{(x-a)^2}$	02
		(2) Is $\int_{0}^{\infty} \frac{\sin^2 x}{x^2}$ convergent? Justify your answer.	02
	(c)		04
		$f(x) = \frac{x^3}{12} + \frac{1}{x}, \ 1 \le x \le 4.$ (2) Prove that $Gamma(n) = (n-1) \ Gamma(n-1).$	03
Q.2	(a)	Investigate the convergence of $\sum_{n=1}^{\infty} \frac{n^2}{7^n}$.	03
	(b)	Investigate the convergence of $\sum_{n=1}^{\infty} \frac{2^n (n!)^2}{(2n)!}$	04
	(c)	Find Fourier series of $f(x) = x^2$, $-\pi < x < \pi$.	07
	(c)	Find Fourier series of $f(x) = x, -1 < x < 0$ = 2, 0 < x < 1	07
Q.3	(a)	Find the derivative of $f(x, y) = x^2 + xy + y^2$ in the direction $\hat{i} + \hat{j}$ at $P(1,1)$.	03
	(b)	Find the tangent plane of $z = e^x \cos y$ at $P(0,0,0)$.	04
	(c)	Find local extreme values of $f(x, y) = xy - x^2 - y^2 - x$.	07
Q.3	(a)	OR Explain second derivative test for local extreme values.	03
-	(b)		04
	(c)	Determine the minimum value of $x^2 yz^2$ subject to the condition $x + y + 2z = 5$ using method of Lagrange multipliers.	07
Q.4	(a)		03

1

Download all NOTES and PAPERS at StudentSuvidha.com

(b) Evaluate the integral
$$\int_{0}^{2} \int_{x/2}^{1} \frac{1}{3} e^{y^{2}} dy dx$$
 04

by change of order.

(c) (1) Find the area of the region covered by
$$x = 1$$
, $x = 4$, $y = 0$ and $y = \sqrt{x}$.

(2) Evaluate
$$\int_{x=0}^{1} \int_{y=0}^{x^{1/4}} \int_{z=0}^{y^2} \sqrt{z} \, dz \, dy \, dx$$
 03
OR

Q.4 (a) Evaluate
$$\iint_{R} xy \, dA$$
 where *R* is the region
bounded by *x* axis, the ordinate $x = 2a$ and
the curve $x^2 = 4ay$.

(b) Evaluate the integral
$$\int_{y=0}^{1} \int_{x=0}^{\cos^{-1} y} e^{\sin x} dx dy$$
 by change of order. 04

(c) (1) Change in to polar coordinates then solve
$$\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{-(x^{2}+y^{2})} dy dx.$$
 04

(2) Let
$$x + y = u$$
 and $y = uv$ are given transformations. Find **03** Jacobian for change of variables.

Q.5 (a)
Find characteristic equation of
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$
 03

(c) Solve

$$x + y + w = 1$$
, $2x + 12 + w = 3$, $2y + z + 2w = 2$.
OR

Q.5 (a) Show that give matrix
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$$
 satisfies its Characteristic 03 equation.

(b) Show that
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$
 converges. 04
(c) $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ 07

(c) Show that
$$A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & -1 & 2 \\ -4 & -8 & 7 \end{bmatrix}$$
 is diagonalizable. Find the matrix of

eigen vectors and diagonal matrix.

Download all NOTES and PAPERS at StudentSuvidha.com